

PROGRAM REALIZACJI ZAJĘĆ Schedule for anatomy classes.

Przedmiot: ANATOMIA PRAWIDŁOWA

Human anatomy

Tematyka ćwiczeń.

Kierunek: LEKARSKI - semestr zimowy - moduł 3/7

Field of study: Faculty of medicine - fall semestr - part 3/7

CENTRAL NERVOUS SYSTEM (CNS) LABORATORY CLASSES 1 Wet lab classes with PBL and SGD (Classes will be conducted at the Collegium Anatomicum. Wet preparations.

Classes implemented using VR, Anatomage and the "inverted spotters" method).

Review - Cranial Bones

- General anatomical terms of nervous system:
 - neuron classification, synapse, neuroglia, white and grey matter, nuclei, ganglia and plexus.
 - Classification of nervous tracts and pathways (association tract, projection tract and commissural tract of telencephalon).
- Divisions of the nervous system and brain
 - Central and peripheral nervous system
 - Somatic and autonomic nervous system
 - CNS division according to the embryonic development: telencephalon, diencephalon, mesencephalon (midbrain), pons, medulla oblongata (myelencephalon), cerebellum.
 - · Clinical division of the CNS into cerebrum (cerebral hemispheres, diencephalon), brainstem (midbrain, pons, medulla oblongata) and cerebellum

Telencephalon-part I

- General structure and main parts: cerebral hemispheres, basal ganglia, lateral ventricles
- Cerebral cortex (frontal, parietal, temporal, occipital, insular lobes- their gyri and sulci)
- Functional areas of the cerebral cortex
- General information about cerebral dominance
- Olfactory system (olfactory pathway and olfactory cortex)
- Limbic system (limbic lobe and general information about its other structures and role of the limbic system.

Telencephalon-part II

- Structure and localization of the subcortical nuclei of the telencephalon (basal ganglia)
 - Caudate nucleus, lentiform nucleus (putamen and globus pallidus), claustrum, amygdaloid nuclear complex
 - Basal ganglia as parts of the striatal (extrapyramidal) motor system and general information about the role of the extrapyramidal motor system
- White matter of the brain hemisphere
 - Associative pathways of the brain hemisphere (arcuate fasciculus, fornix)
 - Cerebral commissures (corpus callosum, anterior commissure, commissure of the fornix)
 - Internal capsule (detailed structure, localization and role)
- Lateral ventricle (localization, parts, connection and role in production of the cerebrospinal fluid),
 - interventricular foramen (foramen of Monro), septum pellucidum, choroid plexus of lateral ventricle.

LABORATORY CLASSES 2

Wet lab classes with PBL and SGD (Classes will be conducted at the *Collegium Anatomicum*. Wet preparations. Classes implemented using VR, *Anatomage* and the "inverted spotters" method).

Diencephalon:

- 1. Thalamus
 - Localization and boundaries
 - Internal structure of the thalamus (thalamic nuclei- their connections and role)
 - Anterior nucleus
 - Dorsal nuclei (pulvinar)
 - Ventral nuclei
 - Intralaminar nuclei
 - Lateral and medial geniculate bodies (metathalamus)
- 2. Epithalamus
 - Localization and role of the pineal body, habenular trigone, medullary stria of the thalamus and posterior commissure
- Hypothalamus
 - Localization, external morphology and structures of the hypothalamus
 - Optic chiasm, tuber cinereum, infundibulum and hypophysis, mamillary bodies
 - Hypothalamic regions, nuclei and their role
 - Lateral hypothalamic nucleus, preoptic nucleus, supraoptic region (anterior, paraventricular, supraoptic nuclei), tuberal region (ventromedial, arcuate nuclei), mamillary region (mamillary, posterior nuclei)
 - Role of the hypothalamus in the maintenance of homeostasis
- 4. Subthalamus
 - Localization and role of the subthalamic nucleus (part of the extrapyramidal motor system)
- 5. Third ventricle
 - Localization, connections and role in production of the cerebrospinal fluid

Brainstem = midbrain + pons + medulla oblongata (part I)

- 6. Mesencephalon (midbrain)
 - External morphology and structures of the midbrain
 - Cerebral aqueduct, tectum, cerebral peduncle (tegmentum and basis pedunculi)
 - Localization and role of the internal structures of the midbrain
 - Nuclei of the superior and inferior colliculi
 - Substantia nigra
 - Periaqueductal gray matter
 - Nuclei of the cranial nerves (oculomotor, trochlear, trigeminal)
 - Red nucleus as a part of the reticular system
 - White matter of the midbrain
 - Descending motor pathways in the basis pedunculi (corticospinal, corticobulbar, corticopontine)
 - Descending motor extrapyramidal pathways in tegmentum (rubrospinal)
 - Ascending sensory pathways in tegmentum (medial, lateral and spinal lemnisci)
 - Associative pathways of the midbrain (medial and dorsal longitudinal fasciculi)
- 7. Pons:
 - External morphology and structures of the pons
 - Cerebellopontine angle and its clinical significance
 - Localization and role of the internal structures of the pons
 - Pontine nuclei
 - Nuclei of the cranial nerves (trigeminal, abducent, facial, vestibulocochlear)
 - Locus ceruleus
 - White matter of the pons
 - Descending motor pathways in the basis pedunculi (corticospinal, corticobulbar, corticopontine)
 - Descending motor extrapyramidal pathways in tegmentum (rubrospinal)
 - Ascending sensory pathways in tegmentum (medial, lateral and spinal lemnisci)
 - Associative pathways of the midbrain (medial and dorsal longitudinal fasciculi)
- 8. Medulla oblongata (myelencephalon)
 - External morphology and structures of the medulla oblongata
 - Ventral surface (pyramid, olive, cranial nerves)

2021/2022

- Dorsal surface (gracile and cuneate tubercles and fasciculi; rhomboid fossa)
- Localization and role of the internal structures of the medulla oblongata
 - Descending motor pathways (pyramids and pyramidal decussation)
 - Descending motor extrapyramidal pathways and relay nuclei (olivary nucleus, olivospinal and olivocerebellar pathways)
 - Ascending sensory pathways and relay nuclei (nucleus gracilis and nucleus cuneatus, medial lemniscus and decussation of the medial lemniscus), spinal lemniscus
 - Nuclei of the cranial nerves (trigeminal, glossopharyngeal, vagus, accessory, hypoglossal)
- Role of the medulla oblongata

LABORATORY CLASSES 3

Wet lab classes with PBL and SGD (Classes will be conducted at the *Collegium Anatomicum*. Wet preparations.

Classes implemented using VR, *Anatomage* and the "inverted spotters" method).

Brainstem = midbrain + pons + medulla oblongata (part II)

- 1. General information about the reticular system
 - Autonomic centers responsible for respiration, circulation and gastrointestinal motility
 - Role of the ascending and descending reticular system of the brainstem
- Fourth ventricle
 - Localization and walls, rhomboid fossa, connections and role in production and circulation of the cerebrospinal fluid)
- 3. Main division of the cerebellum
 - Vermis, hemispheres (significance of the cerebellar tonsil), cerebellar peduncles
 - Lobes of the cerebellum: flocculonodular, anterior and posterior
- 4. Internal structures of the cerebellum
 - Medullary core and nuclei (fastigial, emboliform, globose and dentate)
 - Afferent and efferent cerebellar pathways
- 5. Role of the cerebellum and its clinical division into zones
 - Vermal zone connected with maintenance of posture and balance
 - Paravermal zone connected with maintenance of muscle tone
 - Lateral zone of hemisphere connected with coordination of motor activity

Spinal cord

- 6. Localization and external morphology of the spinal cord
 - Shape, enlargements, conus medullaris and its localization in the vertebral canal, filum terminale
 - Superficial structures and sulci of the spinal cord
- 7. General structure of the spinal nerves
 - Names, roots (ventral, dorsal), dorsal root ganglion, cauda equina
- 8. Internal structure of the spinal cord
 - Gray matter
 - Horns of the spinal cord (ventral, dorsal, lateral), sacral parasympathetic nucleus and their functional significance
 - White matter
 - Funiculi of the spinal cord (ventral, dorsal, lateral)
- 4. Tracts of the spinal cord (course, place of deccussation, functional character)
 - Ascending spinal tracts: lateral spinothalamic tract, ventral spinothalamic tract, dorsal column- medial lemniscus pathway, spinocerebellar tracts
 - Descending spinal tracts : corticospinal (pyramidal) tracts, extrapyramidal motor tracts
 - Upper and lower motor neurons
 - Main differences between injury of the upper and lower neurons
- 5. Autonomic nervous system (ANS)
- 6. Parts of ANS (sympathetic, parasympathetic, enteric)
- 7. General course of the autonomic fibers (preganglionic and postganglionic neurons)
- 8. Centers of ANS

2021/2022

- Limbic system
 - Hippocampus: hippocampal formation, hippocampal cortex.
 - Limbic system: tracts of limbic lobe and system, afferent and efferent fibres, basal nuclei.
- Hypothalamus
- Autonomic centers of the brainstem
- Autonomic centers of the spinal cord
- 9. Course of the sympathetic preganglionic fibers, sympathetic ganglia, general course of the sympathetic postganglionic fibers
- 10. Course of the parasympathetic preganglionic fibers, parasympathetic ganglia, general course of the parasympathetic postganglionic fibers
- 11. Meninges of the brain and spinal cord
 - Dura mater
 - Falx cerebri, tentorium cerebelli, diaphragma sellae
 - Dural venous sinuses
 - Spinal epidural space and potential cranial epidural space
 - Subdural space
 - Arachnoid
 - Arachnoid granulations
 - Subarachnoid space and its most important cisterns (cerebellomedullary and spinal)
 - Pia mater
- 12. Blood supply of the meninges (meningeal arteries)

LABORATORY CLASSES 4

Wet lab classes with PBL and SGD (Classes will be conducted at the *Collegium Anatomicum*. Wet preparations. Classes implemented using VR, *Anatomage* and the "inverted spotters" method).

- 1. Arterial blood supply of the brain
 - Arteries of the brain (origin, general course, branches)
 - Internal carotid artery
 - Vertebral artery
 - Arterial circle of Willis
 - Areas of supply of the particular brain arteries and their branches
- 2. Veins of the brain: superficial and deep cerebral veins
- 3. Arterial blood supply of the spinal cord
 - Vertebral artery and its branches (anterior and posterior spinal arteries)
 - Segmental arteries (significance of artery of Adamkiewicz)
 - Areas of supply of the particular spinal cord arteries (segmental vulnerability)
- 4. Main veins of the spinal cord
- REVIEW HEAD AND NECK
- REVIEW CENTRAL NERVOUS SYTSEM (CNS)
- Clinical anatomy.
- Radiological visualization of cerebral hemispheres, brainstem and cerebellum, spinal cord in CT, and NMR examinations
- Radiological visualization of meninges and vascular system of brain and spinal cord in CT, NMR and angiographic examinations

CREDIT 3

Credit: CENTRAL NERVOUS SYTSEM - SPOTTERS / inverted spotters

Credit: CENTRAL NERVOUS SYTSEM - SCQ / MCQ

2021/2022

LABORATORY CLASSES - REVIEW- extra

- Osteology and arthrology all
- Head and neck all
- Central Nervous System all

MCQ - Multiple Choice Question SCQ - Single Choice Question